Exercise plus Solution – Quick overview It is recommended to use this version only for a quick overview of the NMR challenge. All animations of the PowerPoint version are missing, under certain circumstances quality deficiencies may also occur. The higher quality PowerPoint files are freely available for download at any time. # C₄H₁₀O₂ measured in CDCl₃ ### **Deduce the structure!** C₄H₁₀O₂ recorded in CDCl₃ Therefore is a light feet, the important in this example. An estimation is sufficient accurate. Anufistimation is sufficient a doublet and a quartet. The coupling constant is **5.33 Hz**. 305.91 311.25 $2n_{\rm C}-n_{\rm H}+2$ 1128.36 1133.69 $n_{\mathrm{DBE}} =$ H 1139.03 1123.03 = (1139.03Hz + 1123.03Hz)5.33 Hz (d) = 5.33Hz 5.33 Hz 1.29 1.25 1.21 (q) 4.55 4.50 4.5 ppm 3.3 ppm 1.2 ppm gral 6.16 4.5 4.0 3.5 3.0 2.5 2.0 1.5 ^{1}H ppm There is no **double bond equivalent**. Integration is simple, the proportionality factor between the measured integral (in arbitrary units) and the proton number is just 1. C₄H₁₀O₂ recorded in CDCl₃ $C_4H_{10}O_2$ # Contributions