Übung plus Lösung Schnellüberblick
Diese Version soll nur dem schnellen Überblick über die Fragestellung dienen. Sämtliche PowerPoint-Animationen fehlen,
in einigen Fällen könnte die Umsetzung von PowerPoint auf PDF merkwürdig aussehen.
Die qualitativ hochwertigen PowerPoint-Originale stehen jederzeit zum freien Download zur Verfügung.
2.02.12.22.32.42.52.62.72.82.93.03.13.23.33.43.53.63.7
ppm
1
H
0.68
0.66
1.00
0.67
1.00
Inte-
gral
3.34
3.69
ppm
848.53
854.73
860.94
Hz
596.33
603.79
611.08
Hz
C
6
H
12
O
3
1
H NMR.Spektrum
gemessen bei 250.13 MHz
Ermitteln Sie die Struktur, ordnen alle Signale zu und extrahieren zwei Proton-
Proton-Kopplungskonstanten!
Nach der Strukturaufklärung folgt die wahre Herausforderung dieser
Aufgabenstellung (ab Seite 4).
Herausforderung des Monats
Februar 2021
~
~
40
60
80
100
120
140
160
13
C
3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0 ppm
1
H
24.91
30.70
51.49
58.51
71.53
173.90
1
H/
13
C-HMBC
gemessen bei 250.13/62.90 MHz
Die f
1
-(Pseudo)projektion zeigt alle sechs
Kohlenstoffsignale der Verbindung.
Ein separates eindimensionales
Kohlenstoffspektrum wird nicht benötigt.
~
~
~~
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
1
H
3.4 3.2 3.0 2.6
2.4 2.2
2.0
1
H
ppm
25
30
35
40
50
55
60
65
70
75
13
C
3.8 3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0
1
H
ppm
1
H/
13
C-HSQC
gemessen bei 250.13/62.90 MHz
1
H/
1
H-DQF-COSY
gemessen bei 250.13 MHz
Die unerwartete Herausforderung
Unter Verwendung von drei chemischen Verschiebungen und zwei Kopplungskonstanten kann man die
drei Multipletts im Protonenspektrum simulieren. Bei ca. 3.4 ppm sind reales Spektrum und Simulation
nahezu perfekt deckungsgleich, aber bei den beiden anderen Multipletts gibt es kleine, jedoch nicht zu
vernachlässigende Abweichungen zwischen Simulation und Messung. Das gemessene Multiplett bei ca. 1.9
ppm sieht ein wenig komplexer aus als die Simulation.
Vor allem aber sollte man bei ca. 2.4 ppm ein sauberes Triplett erwarten.
2.322.342.362.382.402.422.442.462.48
ppm
gemessen
simuliert
Die Feinaufspaltung resultiert aus der kleinen
Differenz der chemischen Verschiebung zwischen
1.9 ppm und 2.4 ppm. Experimentell kann diese
kleine Abweichung von einem Multiplett erster
Ordnung nicht aufgelöst warden.
Die eigentliche Frage sind aber die zwei markierten
“Warzen”, die im gemessenen, aber nicht im
simulierten Spektrum auftreten.
Woher mögen diese “Artefakte” kommen?
Hinweis:
Zur Beantwortung dieser Frage suchen Sie bitte in der
Literatur das Protonenspektrum von 1-Br-2-Cl-ethan
oder messen es selbst. Nachdem Sie sich über das
komplexe Spektrum gewundert haben, versuchen Sie
die bereits 1957 gegebene theoretische Erklärung zu
verstehen.
2.02.12.22.32.42.52.62.72.82.93.03.13.23.33.43.53.63.7
ppm
1
H
0.68
0.66
1.00
0.67
1.00
Inte-
gral
Basis
Integration, Doppelbindungs-
äquivalente, Symmetrie
Summe der gemessenen Integrale: 4.01
Anzahl der Protonen: 12
Proportionalitätskoeffizient: 2.99
gemessene Integrale * Koeffizient: 2.99 : 2.00 : 2.99 : 1.98 : 2.03
Doppelbindungsäquivalente: 1
3 22 23
C
6
H
12
O
3
symmetrische Kohlenstoffkerne: nein
(alle sechs Kohlenstoffsignale sind
im HMBC getrennt sichtbar)
~~
25
30
35
40
50
55
60
65
70
75
13
C
3.8 3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0
1
H
ppm
71.53
58.51
51.49
30.70
24.91
33 2 2 2
2.41 ppm
3.42
ppm
3.34 ppm3.69 ppm
ca. 1.91
ppm
Bausteine
CH
n
-Fragmente
HSQCs sind sehr leicht auszuwerten. Natürlich ist die
Empfindlichkeit kleiner als die eines eindimensionalen
Protonenspektrums, aber andererseits höher als die
eines eindimensionalen Kohlenstoffspektrums. Es ist
immer zu empfehlen, ein HSQC zu messen, wenn sich die
Gelegenheit dazu bietet.
Die
1
H-(Pseudo)projektion ergänzen wir um die Integrale
und die chemischen Verschiebungen aus dem
eindimensionalen Protonenspektrum. Für die
13
C-
(Pseudo)projektion entnehmen wir die chemischen
Verschiebungen dem eindimensionalen
Kohlenstoffspektrum.
(Das eindimensionale Kohlenstoffspektrum erscheint
nirgendwo als separates Spektrum, sondern nur als
Pseudoprojektion für HSQC und HMBC verwendet.)
~~
25
30
35
40
50
55
60
65
70
75
13
C
3.8 3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0
1
H
ppm
71.53
58.51
51.49
30.70
24.91
33 2 2 2
2.41 ppm
3.42
ppm
3.34 ppm3.69 ppm
ca. 1.91
ppm
Bausteine
CH
n
-Fragmente
Die Protonensignale bei 3.69 ppm und 3.34 ppm können
wegen ihres Integrals nur zu Methylgruppen gehören. Je
drei symmetrische CH-Gruppen können wegen fehlender
Symmetrie (Folie 1) ausgeschlossen werden.
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.69 ppm
51.49 ppm
Bitte fortsetzen zur zweiten Methylgruppe
~~
25
30
35
40
50
55
60
65
70
75
13
C
3.8 3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0
1
H
ppm
71.53
58.51
30.70
24.91
32 2 2
2.41 ppm
3.42
ppm
3.34 ppm
ca. 1.91
ppm
Bausteine
CH
n
-Fragmente
Die Protonensignale bei 3.69 ppm und 3.34 ppm können
wegen ihres Integrals nur zu Methylgruppen gehören. Je
drei symmetrische CH-Gruppen können wegen fehlender
Symmetrie (Folie 1) ausgeschlossen werden.
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.34 ppm
58.51 ppm
H
C
H
H
3.34 ppm
58.51 ppm
~~
25
30
35
40
50
55
60
65
70
75
13
C
3.8 3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0
1
H
ppm
71.53
30.70
24.91
2 2 2
2.41 ppm
3.42
ppm
ca. 1.91
ppm
Bausteine
CH
n
-Fragmente
Die verbleibenden Kreuzpeaks gehören zu
Methylengruppen. Extrahieren wir sie einen nach dem
anderen.
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.34 ppm
58.51 ppm
C
H
H
3.42 ppm
71.53
ppm
C
H
H
3.42 ppm
71.53
ppm
~~
25
30
35
40
50
55
60
65
70
75
13
C
3.8 3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0
1
H
ppm
30.70
24.91
2 2
2.41 ppm
ca. 1.91
ppm
Bausteine
CH
n
-Fragmente
Die verbleibenden Kreuzpeaks gehören zu
Methylengruppen. Extrahieren wir sie einen nach dem
anderen.
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.34 ppm
58.51 ppm
C
H
H
3.42 ppm
71.53
ppm
C
H
H
2.41 ppm
30.70
ppm
C
H
H
2.41 ppm
30.70
ppm
~~
25
30
35
40
50
55
60
65
70
75
13
C
3.8 3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0
1
H
ppm
24.91
2
ca. 1.91
ppm
Bausteine
CH
n
-Fragmente
Die verbleibenden Kreuzpeaks gehören zu
Methylengruppen. Extrahieren wir sie einen nach dem
anderen.
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.34 ppm
58.51 ppm
C
H
H
3.42 ppm
71.53
ppm
C
H
H
2.41 ppm
30.70
ppm
H
H
C
ca. 1.91
ppm
24.91
ppm
H
H
C
ca. 1.91
ppm
24.91
ppm
Beginnen wir damit, die Fragmente ein wenig
umzuordnen. Dies erleichtert die nächsten Schritte.
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.34 ppm
58.51 ppm
H
C
H
H
3.34 ppm
58.51 ppm
H
H
C
ca. 1.91
ppm
24.91
ppm
H
H
C
ca. 1.91
ppm
24.91
ppm
C
H
H
2.41 ppm
30.70
ppm
C
H
H
2.41 ppm
30.70
ppm
C
H
H
3.42 ppm
71.53
ppm
C
H
H
3.42 ppm
71.53
ppm
Verknüpfung der Bausteine
Teil 1 Alkylkette
~
~
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
1
H
3.4 3.2 3.0 2.6
2.4 2.2
2.0
1
H
ppm
Verknüpfung der Bausteine
Teil 1 Alkylkette
Aus dem COSY können wir keine Aussagen über die
Verknüpfung der Methylgruppen ableiten.
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.34 ppm
58.51 ppm
C
H
H
2.41 ppm
30.70
ppm
C
H
H
3.42 ppm
71.53
ppm
3.42 ppm
2.41 ppm
ca. 1.91
ppm
3.42
ppm
2.41
ppm
ca. 1.91
ppm
H
H
C
ca. 1.91
ppm
24.91
ppm
~
~
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
1
H
3.4 3.2 3.0 2.6
2.4 2.2
2.0
1
H
ppm
Eine erste Nachbarschaft beobachtet man im COSY für
die Protonen mit den chemischen Verschiebungen von
ca. 1.91 ppm und 3.42 ppm.
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.34 ppm
58.51 ppm
C
H
H
2.41 ppm
30.70
ppm
C
H
H
3.42 ppm
71.53
ppm
3.42 ppm
2.41 ppm
ca. 1.91
ppm
3.42
ppm
2.41
ppm
ca. 1.91
ppm
H
H
C
ca. 1.91
ppm
24.91
ppm
Verknüpfung der Bausteine
Teil 1 Alkylkette
~
~
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
1
H
3.4 3.2 3.0 2.6
2.4 2.2
2.0
1
H
ppm
Eine erste Nachbarschaft beobachtet man im COSY für
die Protonen mit den chemischen Verschiebungen von
ca. 1.91 ppm und 3.42 ppm.
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.34 ppm
58.51 ppm
C
H
H
2.41 ppm
30.70
ppm
3.42 ppm
2.41 ppm
ca. 1.91
ppm
3.42
ppm
2.41
ppm
ca. 1.91
ppm
H
H
C
ca. 1.91
ppm
24.91
ppm
C
H
H
3.42 ppm
71.53
ppm
C
H
H
3.42 ppm
71.53
ppm
H
H
C C
H
H
3.42 ppm
ca. 1.91
ppm
24.91
ppm
71.53
ppm
Verknüpfung der Bausteine
Teil 1 Alkylkette
~
~
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
1
H
3.4 3.2 3.0 2.6
2.4 2.2
2.0
1
H
ppm
Gemäß den COSY-Kreuzpeaks sind die Protonen mit den
chemischen Verschiebungen von ca. 1.91 ppm und 2.41
ppm ebenfalls benachbart. Das Alkylfragment wird damit
komplettiert.
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.34 ppm
58.51 ppm
C
H
H
2.41 ppm
30.70
ppm
3.42 ppm
2.41 ppm
ca. 1.91
ppm
3.42
ppm
2.41
ppm
ca. 1.91
ppm
H
H
C
ca. 1.91
ppm
24.91
ppm
H
H
C C
H
H
3.42 ppm
ca. 1.91
ppm
24.91
ppm
71.53
ppm
Verknüpfung der Bausteine
Teil 1 Alkylkette
~
~
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
1
H
3.4 3.2 3.0 2.6
2.4 2.2
2.0
1
H
ppm
Gemäß den COSY-Kreuzpeaks sind die Protonen mit den
chemischen Verschiebungen von ca. 1.91 ppm und 2.41
ppm ebenfalls benachbart. Das Alkylfragment wird damit
komplettiert.
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.34 ppm
58.51 ppm
3.42 ppm
2.41 ppm
ca. 1.91
ppm
3.42
ppm
2.41
ppm
ca. 1.91
ppm
H
H
C C
H
H
3.42 ppm
ca. 1.91
ppm
24.91
ppm
71.53
ppm
C
H
H
2.41 ppm
30.70
ppm
C
H
H
2.41 ppm
30.70
ppm
C
H
H
H
H
C C
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
Verknüpfung der Bausteine
Teil 1 Alkylkette
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.34 ppm
58.51 ppm
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.34 ppm
58.51 ppm
C
H
H
H
H
C C
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
C
H
H
H
H
C C
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
Das COSY hilft jetzt nicht mehr weiter.
Ordnen wir die bisherigen Fragmente unter
Verwendung der temporär verborgenen
Methylgruppen ein wenig um.
Was fehlt?
Eine kurze Bestandsaufnahme
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.34 ppm
58.51 ppm
C
H
H
H
H
C C
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
Summenformel
C
6
H
12
O
3
Bisher bekannte Bausteine
C
5
H
12
Nicht zugeordnetes quartäres
C
-Atom
173.9 ppm
es fehlen
CO
3
ein Doppel
-
bindungs
-
äquivalent
O
C
173.90
ppm
O
O
Aus den fehlenden Komponenten resultieren drei Fragmente, um
die wir die ungeordnete Liste an Bausteinen ergänzen können.
Was fehlt?
Eine kurze Bestandsaufnahme
~
~
40
60
80
100
120
140
160
13
C
3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0 ppm
1
H
24.91
30.70
51.49
58.51
71.53
173.90
H
C
H
H
3.34 ppm
58.51 ppm
C
H
H
H
H
C C
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
O
C
173.90
ppm
O
O
3.34 ppm
3.42
ppm
Verknüpfung der Bausteine
Das finale Puzzle
Zwei HMBC-Kreuzpeaks beinhalten sehr
ähnliche Informationen.
Die erste Nachbarschaft beobachtet man
zwischen den Signalen mit den
chemischen verschiebungen von 58.51
ppm und 3.42 ppm.
H
C
H
H
3.69 ppm
51.49 ppm
~
~
40
60
80
100
120
140
160
13
C
3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0 ppm
1
H
24.91
30.70
51.49
58.51
71.53
173.90
H
C
H
H
3.34 ppm
58.51 ppm
C
H
H
H
H
C C
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
O
C
173.90
ppm
O
O
3.34 ppm
3.42
ppm
Außerdem gehören die Signale mit den
chemischen Verschiebungen von 71.53 ppm
und 3.34 ppm zu benachbarten Kernen.
H
C
H
H
3.69 ppm
51.49 ppm
Verknüpfung der Bausteine
Das finale Puzzle
~
~
40
60
80
100
120
140
160
13
C
3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0 ppm
1
H
24.91
30.70
51.49
58.51
71.53
173.90
C
H
H
H
H
C C
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
O
C
173.90
ppm
O
O
H
C
H
H
3.34 ppm
58.51 ppm
H
C
H
H
3.34 ppm
58.51 ppm
Eine Verknüpfungsmöglichkeit erklärt
beide Kreuzpeaks.
C
H
H
H
H
C C
H
H
H
CX
H
H
3.42 ppm
2.41 ppm
3.34 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
58.51 ppm
X ist entweder - O - oder - CO -.
H
C
H
H
3.69 ppm
51.49 ppm
Verknüpfung der Bausteine
Das finale Puzzle
~
~
40
60
80
100
120
140
160
13
C
3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0 ppm
1
H
24.91
30.70
51.49
58.51
71.53
173.90
C
H
H
H
H
C C
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
O
C
173.90
ppm
O
O
Wie wäre es mit X = - CO -?
C
H
H
H
H
C C
H
H
H
CX
H
H
3.42 ppm
2.41 ppm
3.34 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
58.51 ppm
Die chemische Verschiebung der Protonen
der -CH
2
-Gruppe direkt neben X kann man
leicht mit Hilfe der Schoolery-Regeln
abschätzen.
H
C
H
H
3.69 ppm
51.49 ppm
Verknüpfung der Bausteine
Das finale Puzzle
~
~
40
60
80
100
120
140
160
13
C
3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0 ppm
1
H
24.91
30.70
51.49
58.51
71.53
173.90
C
H
H
H
H
C C
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
O
C
173.90
ppm
O
O
C
H
H
H
H
C C
H
H
H
CX
H
H
3.42 ppm
2.41 ppm
3.34 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
58.51 ppm
Man erhält
X = - O - 3.06 ppm
X = - CO - 2.40 ppm
H
C
H
H
3.69 ppm
51.49 ppm
Verknüpfung der Bausteine
Das finale Puzzle
~
~
40
60
80
100
120
140
160
13
C
3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0 ppm
1
H
24.91
30.70
51.49
58.51
71.53
173.90
C
H
H
H
H
C C
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
O
C
173.90
ppm
O
O
C
H
H
H
H
C C
H
H
H
CX
H
H
3.42 ppm
2.41 ppm
3.34 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
58.51 ppm
Es gäbe noch einen zweiten Weg zum
Ausschluss von
X = - CO -.
Have a look for this cross peak.
3.69 ppm
H
C
H
H
3.69 ppm
51.49 ppm
Verknüpfung der Bausteine
Das finale Puzzle
~
~
40
60
80
100
120
140
160
13
C
3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0 ppm
1
H
24.91
30.70
51.49
58.51
71.53
173.90
C
H
H
H
H
C C
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
O
C
173.90
ppm
O
O
C
H
H
H
H
C C
H
H
H
CX
H
H
3.42 ppm
2.41 ppm
3.34 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
58.51 ppm
If you insert - CO - instead of X and keep
everything else in place the length of the
coupling path to the protons with the
chemical shift of 3.69 ppm is at least 6
bonds. Try it!
3.69 ppm
You cannot attach the methyl group with
the chemical shift of 3.69 ppm directly to
the carbon with the chemical shift of 30.70
ppm, because there was no COSY cross peak
between the protons with the chemical
shifts of 2.41 ppm and 3.69 ppm. You would
need an oxygen atom as bridge, resulting in
six bonds between X (-CO-) and H (3.69
ppm).
H
C
H
H
3.69 ppm
51.49 ppm
Verknüpfung der Bausteine
Das finale Puzzle
~
~
40
60
80
100
120
140
160
13
C
3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0 ppm
1
H
24.91
30.70
51.49
58.51
71.53
173.90
O
C
173.90
ppm
O
After changing X to O there are only two
possibilities to finalize the structure.
O
O
C
H
H
H
H
C C
H
H
H
CX
H
H
3.42 ppm
2.41 ppm
3.34 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
58.51 ppm
C
H
H
H
H
C C
H
H
H
CO
H
H
3.42 ppm
2.41 ppm
3.34 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
58.51 ppm
H
C
H
H
3.69 ppm
51.49 ppm
Verknüpfung der Bausteine
Das finale Puzzle
~
~
40
60
80
100
120
140
160
13
C
3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0 ppm
1
H
24.91
30.70
51.49
58.51
71.53
173.90
Let us try one of them.
C
H
H
H
H
C C
H
H
H
CO
H
H
3.42 ppm
2.41 ppm
3.34 ppm
ca. 1.91
ppm
24.91
ppm
30.70
ppm
71.53
ppm
58.51 ppm
O
C
173.90
ppm
O
H
C
H
H
3.69 ppm
51.49 ppm
H
C
H
H
3.69 ppm
51.49 ppm
O
O
C
173.90
ppm
Verknüpfung der Bausteine
Das finale Puzzle
~
~
40
60
80
100
120
140
160
13
C
3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0 ppm
1
H
24.91
30.70
51.49
58.51
71.53
173.90
Let us first inspect one HMBC cross peak.
O
H
C O
H
H
C C
H
H
H
H
C C
H
H
H
CO
H
H
3.42 ppm
2.41 ppm
3.69 ppm
3.34 ppm
ca. 1.91
ppm
24.91
ppm
173.90
ppm
30.70
ppm
71.53
ppm
51.49 ppm
58.51 ppm
ca. 1.91
ppm
This is a classical three bond correlation. In
the case of the alternative arrangement of
the -CO-O- group, this would be a much less
likely four-bond correlation.
Verknüpfung der Bausteine
Das finale Puzzle
~
~
40
60
80
100
120
140
160
13
C
3.6 3.4 3.2 3.0 2.6 2.4 2.2 2.0 ppm
1
H
24.91
30.70
51.49
58.51
71.53
173.90
O
H
C O
H
H
C C
H
H
H
H
C C
H
H
H
CO
H
H
3.42 ppm
2.41 ppm
3.69 ppm
3.34 ppm
ca. 1.91
ppm
24.91
ppm
173.90
ppm
30.70
ppm
71.53
ppm
51.49 ppm
58.51 ppm
ca. 1.91
ppm
If we estimate the chemical shift of the protons
bound to the carbon with the chemical shift of
30.70 ppm using Shoolerys rule we obtain:
2.25 ppm (presented structure)
3.83 ppm (alternative arrangement of CO-O-)
Good old Shoolerys rule is another way
to confirm this structure.
Verknüpfung der Bausteine
Das finale Puzzle
Coupling constants
It looks simple, but it is not
O
H
C O
H
H
C C
H
H
H
H
C C
H
H
H
CO
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
3.69 ppm
3.34 ppm
24.91
ppm
173.90
ppm
30.70
ppm
71.53
ppm
51.49 ppm
58.51 ppm
For the sake of clarity let us remove all
carbon assignments and the proton
assignments of both methyl groups. We
don‘t need them anymore.
O
H
C O
H
H
C C
H
H
H
H
C C
H
H
H
CO
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
Coupling constants
easy start
Both sets of chemically equivalent methylene protons at
2.41 ppm and 3.42 ppm have two chemically equivalent
protons at about 1.91 ppm as the only vicinal coupling
partners. We expect a triplet in both cases.
𝐽
1
=
860.94 Hz 848.53
2
= 𝟔. 𝟐𝟎 𝐇𝐳
J
2
= 7.37 Hz
J
1
= 6.20 Hz
860.94
854.73
848.53
596.33
603.79
611.08
𝐽
2
=
611.08 Hz 596.33
2
= 𝟕. 𝟑𝟕 𝐇𝐳
3.42 ppm 2.41 ppm
7.37
Hz
6.20
Hz
O
H
C O
H
H
C C
H
H
H
H
C C
H
H
H
CO
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
Coupling constants
done
For the methylene protons at 1.91 ppm we expect a triplet
of triplets. Because 1.91 ppm and 2.41 ppm are relatively
close in chemical shift, we expect very first signs of higher
order (e.g slight roofing“) but, in principle the triplet of
triplets looks fine.
7.37
Hz
6.20
Hz
Δδ
𝐽
=
2.41 ppm 1.91ppm 250.13 MHz
7.37 Hz
= 𝟏𝟔. 𝟗𝟕
O
H
C O
H
H
C C
H
H
H
H
C C
H
H
H
CO
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
Coupling constants
A last check
The simulation of two multiplets looks fine.
7.37
Hz
6.20
Hz
2.41 ppm
measured
measured
simulated
simulated
1.91 ppm
But … Have a closer look.
Some experimental details are missing in the simulation. Noise?
Coupling constants
Some refinement
8.1Hz
6.70Hz
C
H
H
H
H
C C
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
-10.8Hz
8.1Hz
-12.9Hz
-0.2Hz
After changing some coupling constants and adding
geminal coupling constants and a long rang coupling
constant the wartsare simulated nearly perfectly.
It is not possible to measure these values directly from
the spectra presented here, but you can repeat the
simulation using the values given and see that they give
the correct result.
The second coupling pathway with a coupling
constant of 6.70 Hz is not shown here for
reason of clarity.
Coupling constants
Some refinement
8.1Hz
6.70Hz
C
H
H
H
H
C C
H
H
3.42 ppm
2.41 ppm
ca. 1.91
ppm
-10.8Hz
8.1Hz
-12.9Hz
-0.2Hz
But …
Why should vicinal coupling constants between chemically
equivalent protons have different values? There is the
possibility of free rotation around the single bond between
the carbon atoms. The vicinal coupling constants, of course,
depend on the dihedral angle following the Karplus equation,
but this effect should be averaged out by the fast rotation
around all possible dihedral angles between 0 and 360
degrees.
Coupling constants
An explanation
C
H
H
H
H
C Y
X
Let us reduce our molecule to a bisubstituted ethane derivative
with two different substituents
X = -CO-O-CH
3
and
Y = -CH2-O-CH
3
.
H1`
H1``
H2`
H2``
C1
C2
X
Y
For the moment don‘t worry about the hydrogen atoms with four
different labels shown here, although you expect that H1` and H1`` or
H2`and H2`` should be equivalent.
H1`
H1``
H2`
H2``
C1
C2
X
Y
Symmetry
Are H2`and H2`` chemically
equivalent?
If you see the static structure of our unsymmetric ethane derivative there
seems to be no question.
There is a symmetry plane inside the molecule, which makes both
H1`/H1`` and H2`/H2`` chemically equivalent.
But there is free rotation around the C1-C2 single bond possible and the
rotamer shown here is not the only one.
Let us introduce some assumptions about the rotation around the C1-C2
bond.
- The first assumption is that even with hydrogens the steric hindrance will
favour the three staggered conformations
- The second assumption is that bond rotation is so much faster than NMR
dwell time and we are seeing the average of the three staggered rotamers.
These assumptions are only necessary to keep the mathematics simple.
H1`
H1``
H2`
H2``
C1
C2
X
Y
C2
120°
C2
120°
C1-C2
180°
change view
to right side
Symmetry
Are H2`and H2`` chemically
equivalent?
H1`
H1``
H2`
H2``
C1
C2
X
Y
I
H1`
X
Y
C1
C2
H1``
H2`
H2``
II
H1`
X
Y
C1
C2
H1``
H2`
H2``
III
H1`
X
Y
C1
C2
H1``
H2`
H2``
III
First let us create the three rotamers (I, II and III)
If we turn C2 in rotamer I clockwise by 120 degree we get rotamer II.
Turning once more by 120 degree results in rotamer III.
For rotamer III it is recommendable to change the viewpoint. Turn the
whole molecule around the C1-C2 bond by 180 degree and have a view
to the molecule from the right side instead from the left side.
H1`
H1``
H2`
H2``
C1
C2
X
Y
I
H1`
X
Y
C1
C2
H1``
H2`
H2``
II
H1`
X
Y
C1
C2
H1``
H2`
H2``
III
H1`
H1``
H2`
H2``
C1
C2
X
Y
I
H1`
X
Y
C1
C2
H1``
H2`
H2``
II
H1`
X
Y
C1
C2
H1``
H2`
H2``
III
Symmetry
Are H2`and H2`` chemically
equivalent?
Let us reorder the three rotamers a little bit.
H1`
X
Y
C1
C2
H1``
H2`
H2``
III
As you see there is a mirror plane inside rotamer I
and no symmetry element inside the other two
rotamers.
But on the other hand rotamer II and rotamer III are
mirror images of each other.
H1`
H1``
H2`
H2``
C1
C2
X
Y
I
H1`
X
Y
C1
C2
H1``
H2`
H2``
II
H1`
X
Y
C1
C2
H1``
H2`
H2``
III
Symmetry
Are H2`and H2`` chemically
equivalent?
And now let us paint the protons a little bit.
H1`
H1``
H2`
H2``
C1
C2
X
Y
I
H1`
X
Y
C1
C2
H1``
H2`
H2``
II
H1`
X
Y
C1
C2
H1``
H2`
H2``
III
H1`
H1``
H2`
H2``
C1
C2
X
Y
I
H1`
X
Y
C1
C2
H1``
H2`
H2``
II
H1`
X
Y
C1
C2
H1``
H2`
H2``
III
Symmetry
Are H2`and H2`` chemically
equivalent?
Different colours mean different chemical shifts, identical
colours represent identical chemical shifts. Alltogether we
have six different chemical shifts for the four protons
inside the three rotamers.
As an example H1` and H1`` in rotamer I are identical due
to the internal mirror plane.
H2`` in rotamer II and H2` in
rotamer III are identical, because
rotamer II and rotamer III are
mirror images.
Symmetry
Are H1`and H1`` chemically
equivalent?
The population of the rotamers is p
I
, p
II
and p
III
with
p
II
= p
III
and
p
I
+ p
II
+ p
III
= 1
To keep the following equations short, we
use single letters for the six different
chemical shifts as follows:
δ
H(red)
= R
δ
H(blue)
= B
δ
H(green)
= G
δ
H(yellow)
= Y
δ
H(purple)
= P
δ
H(white)
= W (you wouldn‘t see a white
letter)
p
I
(rotamer
population)
p
II
p
III
H1`
H1``
H2`
H2``
C1
C2
X
Y
I
H1`
X
Y
C1
C2
H1``
H2`
H2``
II
H1`
X
Y
C1
C2
H1``
H2`
H2``
III
Symmetry
Are H2`and H2`` chemically
equivalent?
Now we get for the four protons
δ
H1`
= p
I
* R + p
II
* W + p
III
* Y
δ
H1``
= p
I
* R + p
II
* Y + p
III
* W
δ
H2`
= p
I
* B + p
II
* G + p
III
* P
δ
H2``
= p
I
* B + p
II
* P + p
III
* G
With the boundary condition
p
II
= p
III
we get
δ
H2`
= δ
H2
``
and
δ
H1`
= δ
H1``
p
I
(rotamer
population)
p
II
p
III
H1`
H1``
H2`
H2``
C1
C2
X
Y
I
H1`
X
Y
C1
C2
H1``
H2`
H2``
II
H1`
X
Y
C1
C2
H1``
H2`
H2``
III
Symmetry
Are H2`and H2`` chemically
equivalent?
p
I
(rotamer
population)
p
II
p
III
H1`
H1``
H2`
H2``
C1
C2
X
Y
I
H1`
X
Y
C1
C2
H1``
H2`
H2``
II
H1`
X
Y
C1
C2
H1``
H2`
H2``
III
We arrive at the result you expected from
the beginning without all those difficult
considerations.
But, just for your curiosity, try to repeat the
calculation after replacing H1`` with a third
substituent Z, different from X and Y. In this
case, there is no symmetry, no mirror plane
inside rotamer I nor a mirror plane
between the rotamers II and III.
But, leaving that aside for the moment, let
us return to the main question:
are H2` and H2``
magnetically equivalent?
Symmetry
Are H2`and H2``
magnetically equivalent?
p
I
(rotamer
population)
p
II
p
III
As we have seen, the protons H2` and H2`` are
chemically equivalent. They are magnetically
equivalent as well, if the condition
3
J
H1`,H2`
=
3
J
H1`,H2``
is fulfilled.
Of course the same has to be valid, if we
replace H1` by H1`` on both sides of the
equation.
Let us see the geometric relations
between H1‘/H2` and H1`/H2`` one
after the other for all three rotamers.
H1`
H1``
H2`
H2``
C1
C2
X
Y
I
H1`
X
Y
C1
C2
H1``
H2`
H2``
II
H1`
X
Y
C1
C2
H1``
H2`
H2``
III
H1`
H2`
C1
C2
I
H1`
C1
C2
H2`
II
H1`
C1
C2
H2`
III
Symmetry
Are H2`and H2``
magnetically equivalent?
p
I
(rotamer
probability)
p
II
p
III
dihedral angle
(H1`-C1-C2-H2`)
60°
dihedral angle
(H1`-C1-C2-H2`)
180°
dihedral angle
(H1`-C1-C2-H2`)
60°
Let us start with the geometry between H1` and
H2`. In all three rotamers H1` is labelled in black
and H2` labelled in red.
We always have to focus on two
planes. The first one is created from
the atoms
H1`, C1 and C2,
the second one from the atoms
H2`, C2 and C1.
The dihedral angles between these planes
are
rotamer I 60 degree
rotamer II 180 degree
rotamer III 60 degree
H1`
H2`
C1
C2
I
H1`
C1
C2
H2`
II
H1`
C1
C2
H2`
III
Symmetry
Are H2`and H2``
magnetically equivalent?
p
I
(rotamer
probability)
p
II
p
III
dihedral angle
(H1`-C1-C2-H2`)
60°
dihedral angle
(H1`-C1-C2-H2`)
180°
dihedral angle
(H1`-C1-C2-H2`)
60°
According to the Karplus equation, the vicinal
coupling constant for a dihedral angle of 180 degree is
significantly larger than the vicinal coupling constant
in the case of a dihedral angle of 60 degrees.
Let us write for the coupling constants
between H1` and H2`
J
L
(arge)
if the dihedral angle is 180 degree and
J
S
(mall)
in the case of 60 degree.
J
L
J
S
J
S
J
H1`,H2`
=
p
I
* J
S
+ p
II
* J
L
+ p
III
* J
S
H1`
H2``
C1
C2
I
H1`
C1
C2
H2``
III
H1`
C1
C2
H2``
II
Symmetry
Are H2`and H2``
magnetically equivalent?
p
I
(rotamer
probability)
p
II
p
III
dihedral angle
(H1`-C1-C2-H2``)
180°
dihedral angle
(H1`-C1-C2-H2``)
60°
dihedral angle
(H1`-C1-C2-H2``)
60°
J
S
J
S
J
L
J
H1`,H2``
=
p
I
* J
L
+ p
II
* J
S
+ p
III
* J
S
Let us repeat the same considerations for
H2``, labelled in green.
H1`
C1
C2
H2`
II
Symmetry
Are H2`and H2``
magnetically equivalent?
dihedral angle
(H1`-C1-C2-H2`)
180°
dihedral angle
(H1`-C1-C2-H2`)
180°
J
L
J
L
H1`
H2``
C1
C2
I
J
H1`,H2`
= p
I
* J
S
+ p
II
* J
L
+ p
III
* J
S
J
H1`,H2``
= p
I
* J
L
+ p
II
* J
S
+ p
III
* J
S
Finally we have
Now, please keep in mind the already known relations (p
II
= p
III
and p
I
+ p
II
+ p
III
= 1) and play around a little bit with
the population of rotamer I. Start with p
I
= 0.333.
You will see how the two coupling constants vary in opposite directions with the population p
I
.
The two coupling constants would only be identical in
the case of p
I
= p
II
= p
III
, and with the two couplings we
previously labelled as J
s
being identical. But......
We made some simplifications. In principle no
pair of the three rotamers result in identical
coupling constants for either J
L
or J
S
. As an
example see the environment for the two
rotamers with dihedral angles of 180 degree
between the coupling protons (J
L
). In spite of
an idential dihedral angle the coupling
pathway is clearly different.
So if we did happen to find identical coupling
constants in such a system it would be purely
by luck!
Symmetry
Conclusion
C
H
H
H
H
C Y
X
As soon as an asymmetrically substituted ethane is
recognized as a structural fragment within an achiral
compound, the methylene protons of this ethane fragment
are always chemically equivalent and always magnetically
non-equivalent.
Why achiral?
That‘s very simple. Within chiral compounds the methylene protons are
chemically non-equivalent, which means, the question of magnetic
equivalence doesn‘t appear.
A
A`
X
X`
0.70.80.91.01.11.21.31.41.51.61.81.92.02.12.22.32.42.52.62.72.82.9
ppm
1
H
Symmetry
Keep your eyes open
Magnetic non-equivalence in alkyl chains is often
not visible at a first glance. But with open eyes, you
can see the effect almost everywhere, such as for
example in the methylene group of propylamine.
As you see the intensity ratio of the “triplet” lines
at 2.6 ppm deviates from 1:2:1 and the center line
shows deviations from the ideal line shape,
especially in the lower area. On the other hand, the
triplet of the methyl group is almost perfect, except
for the roofing effect.
Beiträge
Messungen
Spektrometerzeit
TU München
Diskussionen
Zusammenstellung
Rainer Haeßner
Rainer Haeßner
Weitere Beispiele …
Alan M. Kenwright
Nils Schlörer
Contributions
Some special thanks.
This problem of the month is the result of an exciting discussion within the AMMRL mailing list.
It is not possible to mention all of the valuable feedback here - sorry - but some special contributions
should be mentioned, I believe.
Svetlana Simowa provided an easy to understand explanation.
Novruz Akhmedov extracted the coupling constants used in the simulations from the raw data.
Hsin Wang contributed some text building blocks for the explanation using only a few words to focus on
the essential details.
Karel Klika pointed out that, in principle, there is no perfect average even in the case of idential
populations of all three rotamers.
Lukas Hintermann always provided immediate response to stereochemical questions of all kind.